matrixportal-m4
Constants
const (
	//    Pin   // Function          SERCOM  PWM  Interrupt
	//    ----  // ----------------  ------  ---  ---------
	D0	= PA01	// UART RX            1[1]   PWM  EXTI1
	D1	= PA00	// UART TX            1[0]   PWM  EXTI0
	D2	= PB22	// Button "Up"                    EXTI6
	D3	= PB23	// Button "Down"                  EXTI7
	D4	= PA23	// NeoPixel                       EXTI7
	D5	= PB31	// I2C SDA            5[1]        EXTI15
	D6	= PB30	// I2C SCL            5[0]        EXTI14
	D7	= PB00	// HUB75 R1                       EXTI0
	D8	= PB01	// HUB75 G1                       EXTI1
	D9	= PB02	// HUB75 B1                       EXTI2
	D10	= PB03	// HUB75 R2                       EXTI3
	D11	= PB04	// HUB75 G2                       EXTI4
	D12	= PB05	// HUB75 B2                       EXTI5
	D13	= PA14	// LED                       PWM  EXTI14
	D14	= PB06	// HUB75 CLK                      EXTI6
	D15	= PB14	// HUB75 LAT                      EXTI14
	D16	= PB12	// HUB75 OE                       EXTI12
	D17	= PB07	// HUB75 ADDR A                   EXTI7
	D18	= PB08	// HUB75 ADDR B                   EXTI8
	D19	= PB09	// HUB75 ADDR C                   EXTI9
	D20	= PB15	// HUB75 ADDR D                   EXTI15
	D21	= PB13	// HUB75 ADDR E                   EXTI13
	D22	= PA02	// ADC (A0)                       EXTI2
	D23	= PA05	// ADC (A1)                       EXTI5
	D24	= PA04	// ADC (A2)                  PWM  EXTI4
	D25	= PA06	// ADC (A3)                  PWM  EXTI6
	D26	= PA07	// ADC (A4)                       EXTI7
	D27	= PA12	// ESP32 UART RX      4[1]   PWM  EXTI12
	D28	= PA13	// ESP32 UART TX      4[0]   PWM  EXTI13
	D29	= PA20	// ESP32 GPIO0               PWM  EXTI4
	D30	= PA21	// ESP32 Reset               PWM  EXTI5
	D31	= PA22	// ESP32 Busy                PWM  EXTI6
	D32	= PA18	// ESP32 RTS                 PWM  EXTI2
	D33	= PB17	// ESP32 SPI CS              PWM  EXTI1
	D34	= PA16	// ESP32 SPI SCK      3[1]   PWM  EXTI0
	D35	= PA17	// ESP32 SPI SDI      3[0]   PWM  EXTI1
	D36	= PA19	// ESP32 SPI SDO      1[3]   PWM  EXTI3
	D37	= NoPin	// USB Host enable
	D38	= PA24	// USB DM
	D39	= PA25	// USB DP
	D40	= PA03	// DAC/VREFP
	D41	= PB10	// Flash QSPI SCK
	D42	= PB11	// Flash QSPI CS
	D43	= PA08	// Flash QSPI I00
	D44	= PA09	// Flash QSPI IO1
	D45	= PA10	// Flash QSPI IO2
	D46	= PA11	// Flash QSPI IO3
	D47	= PA27	// LIS3DH IRQ                     EXTI11
	D48	= PA05	// SPI SCK            0[1]        EXTI5
	D49	= PA04	// SPI SDO            0[0]   PWM  EXTI4
	D50	= PA07	// SPI SDI            0[3]        EXTI7
)
Digital pins
const (
	A0	= PA02	// ADC Channel 0
	A1	= PA05	// ADC Channel 5
	A2	= PA04	// ADC Channel 4
	A3	= PA06	// ADC Channel 6
	A4	= PA07	// ADC Channel 7
)
Analog pins
const (
	LED		= D13
	NEOPIXEL	= D4
	WS2812		= D4
)
LED pins
const (
	BUTTON_UP	= D2
	BUTTON_DOWN	= D3
)
Button pins
const (
	UART1_RX_PIN	= D0	// SERCOM1[1]
	UART1_TX_PIN	= D1	// SERCOM1[0]
	UART2_RX_PIN	= D27	// SERCOM4[1] (ESP32 RX)
	UART2_TX_PIN	= D28	// SERCOM4[0] (ESP32 TX)
	UART_RX_PIN	= UART1_RX_PIN
	UART_TX_PIN	= UART1_TX_PIN
)
UART pins
const (
	SPI0_SCK_PIN	= D34	// SERCOM3[1] (ESP32 SCK)
	SPI0_SDO_PIN	= D36	// SERCOM1[3] (ESP32 SDO)
	SPI0_SDI_PIN	= D35	// SERCOM3[0] (ESP32 SDI)
	SPI1_SCK_PIN	= D48	// SERCOM0[1]
	SPI1_SDO_PIN	= D49	// SERCOM0[0]
	SPI1_SDI_PIN	= D50	// SERCOM0[3]
	SPI_SCK_PIN	= SPI0_SCK_PIN
	SPI_SDO_PIN	= SPI0_SDO_PIN
	SPI_SDI_PIN	= SPI0_SDI_PIN
)
SPI pins
const (
	I2C0_SDA_PIN	= D5	// SERCOM5[1]
	I2C0_SCL_PIN	= D6	// SERCOM5[0]
	I2C_SDA_PIN	= I2C0_SDA_PIN
	I2C_SCL_PIN	= I2C0_SCL_PIN
	SDA_PIN	= I2C_SDA_PIN	// awkward naming required by machine_atsamd51.go
	SCL_PIN	= I2C_SCL_PIN	//
)
I2C pins
const (
	NINA_ACK	= D31
	NINA_GPIO0	= D29
	NINA_RESETN	= D30
	NINA_RX		= UART2_RX_PIN
	NINA_TX		= UART2_TX_PIN
	NINA_RTS	= D32
	NINA_CS		= D33
	NINA_SDO	= SPI0_SDO_PIN
	NINA_SDI	= SPI0_SDI_PIN
	NINA_SCK	= SPI0_SCK_PIN
)
ESP32 pins
const (
	HUB75_R1	= D7
	HUB75_G1	= D8
	HUB75_B1	= D9
	HUB75_R2	= D10
	HUB75_G2	= D11
	HUB75_B2	= D12
	HUB75_CLK	= D14
	HUB75_LAT	= D15
	HUB75_OE	= D16
	HUB75_ADDR_A	= D17
	HUB75_ADDR_B	= D18
	HUB75_ADDR_C	= D19
	HUB75_ADDR_D	= D20
	HUB75_ADDR_E	= D21
)
HUB75 pins
const (
	USBCDC_DM_PIN	= D38
	USBCDC_DP_PIN	= D39
	UART0_RX_PIN	= USBCDC_DM_PIN
	UART0_TX_PIN	= USBCDC_DP_PIN
)
USB CDC pins (UART0)
const (
	TWI_FREQ_100KHZ	= 100000
	TWI_FREQ_400KHZ	= 400000
)
TWI_FREQ is the I2C bus speed. Normally either 100 kHz, or 400 kHz for high-speed bus.
Deprecated: use 100 * machine.KHz or 400 * machine.KHz instead.
const (
	// I2CReceive indicates target has received a message from the controller.
	I2CReceive	I2CTargetEvent	= iota
	// I2CRequest indicates the controller is expecting a message from the target.
	I2CRequest
	// I2CFinish indicates the controller has ended the transaction.
	//
	// I2C controllers can chain multiple receive/request messages without
	// relinquishing the bus by doing 'restarts'.  I2CFinish indicates the
	// bus has been relinquished by an I2C 'stop'.
	I2CFinish
)
const (
	// I2CModeController represents an I2C peripheral in controller mode.
	I2CModeController	I2CMode	= iota
	// I2CModeTarget represents an I2C peripheral in target mode.
	I2CModeTarget
)
const Device = deviceName
Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.
The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.
const (
	KHz	= 1000
	MHz	= 1000_000
	GHz	= 1000_000_000
)
Generic constants.
const NoPin = Pin(0xff)
NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).
const (
	PinAnalog		PinMode	= 1
	PinSERCOM		PinMode	= 2
	PinSERCOMAlt		PinMode	= 3
	PinTimer		PinMode	= 4
	PinTimerAlt		PinMode	= 5
	PinTCCPDEC		PinMode	= 6
	PinCom			PinMode	= 7
	PinSDHC			PinMode	= 8
	PinI2S			PinMode	= 9
	PinPCC			PinMode	= 10
	PinGMAC			PinMode	= 11
	PinACCLK		PinMode	= 12
	PinCCL			PinMode	= 13
	PinDigital		PinMode	= 14
	PinInput		PinMode	= 15
	PinInputPullup		PinMode	= 16
	PinOutput		PinMode	= 17
	PinTCCE			PinMode	= PinTimer
	PinTCCF			PinMode	= PinTimerAlt
	PinTCCG			PinMode	= PinTCCPDEC
	PinInputPulldown	PinMode	= 18
	PinCAN			PinMode	= 19
	PinCAN0			PinMode	= PinSDHC
	PinCAN1			PinMode	= PinCom
)
const (
	PinRising	PinChange	= sam.EIC_CONFIG_SENSE0_RISE
	PinFalling	PinChange	= sam.EIC_CONFIG_SENSE0_FALL
	PinToggle	PinChange	= sam.EIC_CONFIG_SENSE0_BOTH
)
Pin change interrupt constants for SetInterrupt.
const (
	PA00	Pin	= 0
	PA01	Pin	= 1
	PA02	Pin	= 2
	PA03	Pin	= 3
	PA04	Pin	= 4
	PA05	Pin	= 5
	PA06	Pin	= 6
	PA07	Pin	= 7
	PA08	Pin	= 8	// peripherals: TCC0 channel 0, TCC1 channel 4, sercomI2CM0 SDA, sercomI2CM2 SDA
	PA09	Pin	= 9	// peripherals: TCC0 channel 1, TCC1 channel 5, sercomI2CM0 SCL, sercomI2CM2 SCL
	PA10	Pin	= 10	// peripherals: TCC0 channel 2, TCC1 channel 6
	PA11	Pin	= 11	// peripherals: TCC0 channel 3, TCC1 channel 7
	PA12	Pin	= 12	// peripherals: TCC0 channel 6, TCC1 channel 2, sercomI2CM2 SDA, sercomI2CM4 SDA
	PA13	Pin	= 13	// peripherals: TCC0 channel 7, TCC1 channel 3, sercomI2CM2 SCL, sercomI2CM4 SCL
	PA14	Pin	= 14	// peripherals: TCC2 channel 0, TCC1 channel 2
	PA15	Pin	= 15	// peripherals: TCC2 channel 1, TCC1 channel 3
	PA16	Pin	= 16	// peripherals: TCC1 channel 0, TCC0 channel 4, sercomI2CM1 SDA, sercomI2CM3 SDA
	PA17	Pin	= 17	// peripherals: TCC1 channel 1, TCC0 channel 5, sercomI2CM1 SCL, sercomI2CM3 SCL
	PA18	Pin	= 18	// peripherals: TCC1 channel 2, TCC0 channel 6
	PA19	Pin	= 19	// peripherals: TCC1 channel 3, TCC0 channel 7
	PA20	Pin	= 20	// peripherals: TCC1 channel 4, TCC0 channel 0
	PA21	Pin	= 21	// peripherals: TCC1 channel 5, TCC0 channel 1
	PA22	Pin	= 22	// peripherals: TCC1 channel 6, TCC0 channel 2, sercomI2CM3 SDA, sercomI2CM5 SDA
	PA23	Pin	= 23	// peripherals: TCC1 channel 7, TCC0 channel 3, sercomI2CM3 SCL, sercomI2CM5 SCL
	PA24	Pin	= 24	// peripherals: TCC2 channel 2
	PA25	Pin	= 25	// peripherals: TCC2 channel 3
	PA26	Pin	= 26
	PA27	Pin	= 27
	PA28	Pin	= 28
	PA29	Pin	= 29
	PA30	Pin	= 30	// peripherals: TCC2 channel 0
	PA31	Pin	= 31	// peripherals: TCC2 channel 1
	PB00	Pin	= 32
	PB01	Pin	= 33
	PB02	Pin	= 34	// peripherals: TCC2 channel 2
	PB03	Pin	= 35	// peripherals: TCC2 channel 3
	PB04	Pin	= 36
	PB05	Pin	= 37
	PB06	Pin	= 38
	PB07	Pin	= 39
	PB08	Pin	= 40
	PB09	Pin	= 41
	PB10	Pin	= 42	// peripherals: TCC0 channel 4, TCC1 channel 0
	PB11	Pin	= 43	// peripherals: TCC0 channel 5, TCC1 channel 1
	PB12	Pin	= 44	// peripherals: TCC3 channel 0, TCC0 channel 0
	PB13	Pin	= 45	// peripherals: TCC3 channel 1, TCC0 channel 1
	PB14	Pin	= 46	// peripherals: TCC4 channel 0, TCC0 channel 2
	PB15	Pin	= 47	// peripherals: TCC4 channel 1, TCC0 channel 3
	PB16	Pin	= 48	// peripherals: TCC3 channel 0, TCC0 channel 4
	PB17	Pin	= 49	// peripherals: TCC3 channel 1, TCC0 channel 5
	PB18	Pin	= 50	// peripherals: TCC1 channel 0
	PB19	Pin	= 51	// peripherals: TCC1 channel 1
	PB20	Pin	= 52	// peripherals: TCC1 channel 2
	PB21	Pin	= 53	// peripherals: TCC1 channel 3
	PB22	Pin	= 54
	PB23	Pin	= 55
	PB24	Pin	= 56
	PB25	Pin	= 57
	PB26	Pin	= 58	// peripherals: TCC1 channel 2
	PB27	Pin	= 59	// peripherals: TCC1 channel 3
	PB28	Pin	= 60	// peripherals: TCC1 channel 4
	PB29	Pin	= 61	// peripherals: TCC1 channel 5
	PB30	Pin	= 62	// peripherals: TCC4 channel 0, TCC0 channel 6
	PB31	Pin	= 63	// peripherals: TCC4 channel 1, TCC0 channel 7
	PC00	Pin	= 64
	PC01	Pin	= 65
	PC02	Pin	= 66
	PC03	Pin	= 67
	PC04	Pin	= 68	// peripherals: TCC0 channel 0
	PC05	Pin	= 69	// peripherals: TCC0 channel 1
	PC06	Pin	= 70
	PC07	Pin	= 71
	PC08	Pin	= 72
	PC09	Pin	= 73
	PC10	Pin	= 74	// peripherals: TCC0 channel 0, TCC1 channel 4
	PC11	Pin	= 75	// peripherals: TCC0 channel 1, TCC1 channel 5
	PC12	Pin	= 76	// peripherals: TCC0 channel 2, TCC1 channel 6
	PC13	Pin	= 77	// peripherals: TCC0 channel 3, TCC1 channel 7
	PC14	Pin	= 78	// peripherals: TCC0 channel 4, TCC1 channel 0
	PC15	Pin	= 79	// peripherals: TCC0 channel 5, TCC1 channel 1
	PC16	Pin	= 80	// peripherals: TCC0 channel 0
	PC17	Pin	= 81	// peripherals: TCC0 channel 1
	PC18	Pin	= 82	// peripherals: TCC0 channel 2
	PC19	Pin	= 83	// peripherals: TCC0 channel 3
	PC20	Pin	= 84	// peripherals: TCC0 channel 4
	PC21	Pin	= 85	// peripherals: TCC0 channel 5
	PC22	Pin	= 86	// peripherals: TCC0 channel 6
	PC23	Pin	= 87	// peripherals: TCC0 channel 7
	PC24	Pin	= 88
	PC25	Pin	= 89
	PC26	Pin	= 90
	PC27	Pin	= 91
	PC28	Pin	= 92
	PC29	Pin	= 93
	PC30	Pin	= 94
	PC31	Pin	= 95
	PD00	Pin	= 96
	PD01	Pin	= 97
	PD02	Pin	= 98
	PD03	Pin	= 99
	PD04	Pin	= 100
	PD05	Pin	= 101
	PD06	Pin	= 102
	PD07	Pin	= 103
	PD08	Pin	= 104	// peripherals: TCC0 channel 1, sercomI2CM6 SDA, sercomI2CM7 SDA
	PD09	Pin	= 105	// peripherals: TCC0 channel 2, sercomI2CM6 SCL, sercomI2CM7 SCL
	PD10	Pin	= 106	// peripherals: TCC0 channel 3
	PD11	Pin	= 107	// peripherals: TCC0 channel 4
	PD12	Pin	= 108	// peripherals: TCC0 channel 5
	PD13	Pin	= 109	// peripherals: TCC0 channel 6
	PD14	Pin	= 110
	PD15	Pin	= 111
	PD16	Pin	= 112
	PD17	Pin	= 113
	PD18	Pin	= 114
	PD19	Pin	= 115
	PD20	Pin	= 116	// peripherals: TCC1 channel 0
	PD21	Pin	= 117	// peripherals: TCC1 channel 1
	PD22	Pin	= 118
	PD23	Pin	= 119
	PD24	Pin	= 120
	PD25	Pin	= 121
	PD26	Pin	= 122
	PD27	Pin	= 123
	PD28	Pin	= 124
	PD29	Pin	= 125
	PD30	Pin	= 126
	PD31	Pin	= 127
)
Hardware pins
const (
	// SERCOM_FREQ_REF is always reference frequency on SAMD51 regardless of CPU speed.
	SERCOM_FREQ_REF		= 48000000
	SERCOM_FREQ_REF_GCLK0	= 120000000
	// Default rise time in nanoseconds, based on 4.7K ohm pull up resistors
	riseTimeNanoseconds	= 125
	// wire bus states
	wireUnknownState	= 0
	wireIdleState		= 1
	wireOwnerState		= 2
	wireBusyState		= 3
	// wire commands
	wireCmdNoAction		= 0
	wireCmdRepeatStart	= 1
	wireCmdRead		= 2
	wireCmdStop		= 3
)
const (
	QSPI_SCK	= PB10
	QSPI_CS		= PB11
	QSPI_DATA0	= PA08
	QSPI_DATA1	= PA09
	QSPI_DATA2	= PA10
	QSPI_DATA3	= PA11
)
The QSPI peripheral on ATSAMD51 is only available on the following pins
const (
	// WatchdogMaxTimeout in milliseconds (16s)
	WatchdogMaxTimeout = (16384 * 1000) / 1024	// CYC16384/1024kHz
)
const (
	// these are SAMD51 specific.
	usb_DEVICE_PCKSIZE_BYTE_COUNT_Pos	= 0
	usb_DEVICE_PCKSIZE_BYTE_COUNT_Mask	= 0x3FFF
	usb_DEVICE_PCKSIZE_SIZE_Pos	= 28
	usb_DEVICE_PCKSIZE_SIZE_Mask	= 0x7
	usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Pos	= 14
	usb_DEVICE_PCKSIZE_MULTI_PACKET_SIZE_Mask	= 0x3FFF
	NumberOfUSBEndpoints	= 8
)
const HSRAM_SIZE = 0x00030000
const (
	Mode0	= 0
	Mode1	= 1
	Mode2	= 2
	Mode3	= 3
)
SPI phase and polarity configs CPOL and CPHA
const (
	// ParityNone means to not use any parity checking. This is
	// the most common setting.
	ParityNone	UARTParity	= iota
	// ParityEven means to expect that the total number of 1 bits sent
	// should be an even number.
	ParityEven
	// ParityOdd means to expect that the total number of 1 bits sent
	// should be an odd number.
	ParityOdd
)
Variables
var (
	UART1	= &sercomUSART1
	UART2	= &sercomUSART4
	DefaultUART	= UART1
)
UART on the MatrixPortal M4
var (
	I2C0 = sercomI2CM5
)
I2C on the MatrixPortal M4
var (
	SPI0		= sercomSPIM3	// BUG: SDO on SERCOM1!
	NINA_SPI	= SPI0
	SPI1	= sercomSPIM0
)
SPI on the MatrixPortal M4
var (
	ErrTimeoutRNG		= errors.New("machine: RNG Timeout")
	ErrClockRNG		= errors.New("machine: RNG Clock Error")
	ErrSeedRNG		= errors.New("machine: RNG Seed Error")
	ErrInvalidInputPin	= errors.New("machine: invalid input pin")
	ErrInvalidOutputPin	= errors.New("machine: invalid output pin")
	ErrInvalidClockPin	= errors.New("machine: invalid clock pin")
	ErrInvalidDataPin	= errors.New("machine: invalid data pin")
	ErrNoPinChangeChannel	= errors.New("machine: no channel available for pin interrupt")
)
var (
	DAC0	= DAC{Channel: 0}
	DAC1	= DAC{Channel: 1}
)
var Flash flashBlockDevice
var Watchdog = &watchdogImpl{}
Watchdog provides access to the hardware watchdog available in the SAMD51.
var (
	TCC0	= (*TCC)(sam.TCC0)
	TCC1	= (*TCC)(sam.TCC1)
	TCC2	= (*TCC)(sam.TCC2)
	TCC3	= (*TCC)(sam.TCC3)
	TCC4	= (*TCC)(sam.TCC4)
)
This chip has five TCC peripherals, which have PWM as one feature.
var (
	ErrPWMPeriodTooLong = errors.New("pwm: period too long")
)
var Serial Serialer
Serial is implemented via USB (USB-CDC).
var (
	ErrTxInvalidSliceSize		= errors.New("SPI write and read slices must be same size")
	errSPIInvalidMachineConfig	= errors.New("SPI port was not configured properly by the machine")
)
var (
	USBDev	= &USBDevice{}
	USBCDC	Serialer
)
var (
	ErrUSBReadTimeout	= errors.New("USB read timeout")
	ErrUSBBytesRead		= errors.New("USB invalid number of bytes read")
	ErrUSBBytesWritten	= errors.New("USB invalid number of bytes written")
)
func AckUsbOutTransfer
func AckUsbOutTransfer(ep uint32)
AckUsbOutTransfer is called to acknowledge the completion of a USB OUT transfer.
func CPUFrequency
func CPUFrequency() uint32
func CPUReset
func CPUReset()
CPUReset performs a hard system reset.
func ConfigureUSBEndpoint
func ConfigureUSBEndpoint(desc descriptor.Descriptor, epSettings []usb.EndpointConfig, setup []usb.SetupConfig)
func DeviceID
func DeviceID() []byte
DeviceID returns an identifier that is unique within a particular chipset.
The identity is one burnt into the MCU itself, or the flash chip at time of manufacture.
It’s possible that two different vendors may allocate the same DeviceID, so callers should take this into account if needing to generate a globally unique id.
The length of the hardware ID is vendor-specific, but 8 bytes (64 bits) and 16 bytes (128 bits) are common.
func EnableCDC
func EnableCDC(txHandler func(), rxHandler func([]byte), setupHandler func(usb.Setup) bool)
func EnterBootloader
func EnterBootloader()
EnterBootloader should perform a system reset in preparation to switch to the bootloader to flash new firmware.
func FlashDataEnd
func FlashDataEnd() uintptr
Return the end of the writable flash area. Usually this is the address one past the end of the on-chip flash.
func FlashDataStart
func FlashDataStart() uintptr
Return the start of the writable flash area, aligned on a page boundary. This is usually just after the program and static data.
func GetRNG
func GetRNG() (uint32, error)
GetRNG returns 32 bits of cryptographically secure random data
func InitADC
func InitADC()
InitADC initializes the ADC.
func InitSerial
func InitSerial()
func NewRingBuffer
func NewRingBuffer() *RingBuffer
NewRingBuffer returns a new ring buffer.
func ReceiveUSBControlPacket
func ReceiveUSBControlPacket() ([cdcLineInfoSize]byte, error)
func SendUSBInPacket
func SendUSBInPacket(ep uint32, data []byte) bool
SendUSBInPacket sends a packet for USB (interrupt in / bulk in).
func SendZlp
func SendZlp()
type ADC
type ADC struct {
	Pin Pin
}
func (ADC) Configure
func (a ADC) Configure(config ADCConfig)
Configure configures a ADCPin to be able to be used to read data.
func (ADC) Get
func (a ADC) Get() uint16
Get returns the current value of a ADC pin, in the range 0..0xffff.
type ADCConfig
type ADCConfig struct {
	Reference	uint32	// analog reference voltage (AREF) in millivolts
	Resolution	uint32	// number of bits for a single conversion (e.g., 8, 10, 12)
	Samples		uint32	// number of samples for a single conversion (e.g., 4, 8, 16, 32)
	SampleTime	uint32	// sample time, in microseconds (µs)
}
ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.
type BlockDevice
type BlockDevice interface {
	// ReadAt reads the given number of bytes from the block device.
	io.ReaderAt
	// WriteAt writes the given number of bytes to the block device.
	io.WriterAt
	// Size returns the number of bytes in this block device.
	Size() int64
	// WriteBlockSize returns the block size in which data can be written to
	// memory. It can be used by a client to optimize writes, non-aligned writes
	// should always work correctly.
	WriteBlockSize() int64
	// EraseBlockSize returns the smallest erasable area on this particular chip
	// in bytes. This is used for the block size in EraseBlocks.
	// It must be a power of two, and may be as small as 1. A typical size is 4096.
	EraseBlockSize() int64
	// EraseBlocks erases the given number of blocks. An implementation may
	// transparently coalesce ranges of blocks into larger bundles if the chip
	// supports this. The start and len parameters are in block numbers, use
	// EraseBlockSize to map addresses to blocks.
	EraseBlocks(start, len int64) error
}
BlockDevice is the raw device that is meant to store flash data.
type DAC
type DAC struct {
	Channel uint8
}
DAC on the SAMD51.
func (DAC) Configure
func (dac DAC) Configure(config DACConfig)
Configure the DAC. output pin must already be configured.
func (DAC) Set
func (dac DAC) Set(value uint16) error
Set writes a single 16-bit value to the DAC. Since the ATSAMD51 only has a 12-bit DAC, the passed-in value will be scaled down.
type DACConfig
type DACConfig struct {
}
DACConfig placeholder for future expansion.
type I2C
type I2C struct {
	Bus	*sam.SERCOM_I2CM_Type
	SERCOM	uint8
}
I2C on the SAMD51.
func (*I2C) Configure
func (i2c *I2C) Configure(config I2CConfig) error
Configure is intended to setup the I2C interface.
func (*I2C) ReadRegister
func (i2c *I2C) ReadRegister(address uint8, register uint8, data []byte) error
ReadRegister transmits the register, restarts the connection as a read operation, and reads the response.
Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily read such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.
func (*I2C) SetBaudRate
func (i2c *I2C) SetBaudRate(br uint32) error
SetBaudRate sets the communication speed for I2C.
func (*I2C) Tx
func (i2c *I2C) Tx(addr uint16, w, r []byte) error
Tx does a single I2C transaction at the specified address. It clocks out the given address, writes the bytes in w, reads back len(r) bytes and stores them in r, and generates a stop condition on the bus.
func (*I2C) WriteByte
func (i2c *I2C) WriteByte(data byte) error
WriteByte writes a single byte to the I2C bus.
func (*I2C) WriteRegister
func (i2c *I2C) WriteRegister(address uint8, register uint8, data []byte) error
WriteRegister transmits first the register and then the data to the peripheral device.
Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily write to such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.
type I2CConfig
type I2CConfig struct {
	Frequency	uint32
	SCL		Pin
	SDA		Pin
}
I2CConfig is used to store config info for I2C.
type I2CMode
type I2CMode int
I2CMode determines if an I2C peripheral is in Controller or Target mode.
type I2CTargetEvent
type I2CTargetEvent uint8
I2CTargetEvent reflects events on the I2C bus
type NullSerial
type NullSerial struct {
}
NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.
func (NullSerial) Buffered
func (ns NullSerial) Buffered() int
Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.
func (NullSerial) Configure
func (ns NullSerial) Configure(config UARTConfig) error
Configure does nothing: the null serial has no configuration.
func (NullSerial) ReadByte
func (ns NullSerial) ReadByte() (byte, error)
ReadByte always returns an error because there aren’t any bytes to read.
func (NullSerial) Write
func (ns NullSerial) Write(p []byte) (n int, err error)
Write is a no-op: none of the data is being written and it will not return an error.
func (NullSerial) WriteByte
func (ns NullSerial) WriteByte(b byte) error
WriteByte is a no-op: the null serial doesn’t write bytes.
type PDMConfig
type PDMConfig struct {
	Stereo	bool
	DIN	Pin
	CLK	Pin
}
type PWMConfig
type PWMConfig struct {
	// PWM period in nanosecond. Leaving this zero will pick a reasonable period
	// value for use with LEDs.
	// If you want to configure a frequency instead of a period, you can use the
	// following formula to calculate a period from a frequency:
	//
	//     period = 1e9 / frequency
	//
	Period uint64
}
PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.
type Pin
type Pin uint8
Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.
func (Pin) Configure
func (p Pin) Configure(config PinConfig)
Configure this pin with the given configuration.
func (Pin) Get
func (p Pin) Get() bool
Get returns the current value of a GPIO pin when configured as an input or as an output.
func (Pin) High
func (p Pin) High()
High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.
func (Pin) Low
func (p Pin) Low()
Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.
func (Pin) PortMaskClear
func (p Pin) PortMaskClear() (*uint32, uint32)
Return the register and mask to disable a given port. This can be used to implement bit-banged drivers.
func (Pin) PortMaskSet
func (p Pin) PortMaskSet() (*uint32, uint32)
Return the register and mask to enable a given GPIO pin. This can be used to implement bit-banged drivers.
func (Pin) Set
func (p Pin) Set(high bool)
Set the pin to high or low. Warning: only use this on an output pin!
func (Pin) SetInterrupt
func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error
SetInterrupt sets an interrupt to be executed when a particular pin changes state. The pin should already be configured as an input, including a pull up or down if no external pull is provided.
This call will replace a previously set callback on this pin. You can pass a nil func to unset the pin change interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0).
func (Pin) Toggle
func (p Pin) Toggle()
Toggle switches an output pin from low to high or from high to low. Warning: only use this on an output pin!
type PinChange
type PinChange uint8
type PinConfig
type PinConfig struct {
	Mode PinMode
}
type PinMode
type PinMode uint8
PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.
type RingBuffer
type RingBuffer struct {
	rxbuffer	[bufferSize]volatile.Register8
	head		volatile.Register8
	tail		volatile.Register8
}
RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php
func (*RingBuffer) Clear
func (rb *RingBuffer) Clear()
Clear resets the head and tail pointer to zero.
func (*RingBuffer) Get
func (rb *RingBuffer) Get() (byte, bool)
Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.
func (*RingBuffer) Put
func (rb *RingBuffer) Put(val byte) bool
Put stores a byte in the buffer. If the buffer is already full, the method will return false.
func (*RingBuffer) Used
func (rb *RingBuffer) Used() uint8
Used returns how many bytes in buffer have been used.
type SPI
type SPI struct {
	Bus	*sam.SERCOM_SPIM_Type
	SERCOM	uint8
}
SPI
func (*SPI) Configure
func (spi *SPI) Configure(config SPIConfig) error
Configure is intended to setup the SPI interface.
func (*SPI) Transfer
func (spi *SPI) Transfer(w byte) (byte, error)
Transfer writes/reads a single byte using the SPI interface.
func (*SPI) Tx
func (spi *SPI) Tx(w, r []byte) error
Tx handles read/write operation for SPI interface. Since SPI is a synchronous write/read interface, there must always be the same number of bytes written as bytes read. The Tx method knows about this, and offers a few different ways of calling it.
This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer. Note that the tx and rx buffers must be the same size:
spi.Tx(tx, rx)
This form sends the tx buffer, ignoring the result. Useful for sending “commands” that return zeros until all the bytes in the command packet have been received:
spi.Tx(tx, nil)
This form sends zeros, putting the result into the rx buffer. Good for reading a “result packet”:
spi.Tx(nil, rx)
type SPIConfig
type SPIConfig struct {
	Frequency	uint32
	SCK		Pin
	SDO		Pin
	SDI		Pin
	LSBFirst	bool
	Mode		uint8
}
SPIConfig is used to store config info for SPI.
type Serialer
type Serialer interface {
	WriteByte(c byte) error
	Write(data []byte) (n int, err error)
	Configure(config UARTConfig) error
	Buffered() int
	ReadByte() (byte, error)
	DTR() bool
	RTS() bool
}
type TCC
type TCC sam.TCC_Type
TCC is one timer peripheral, which consists of a counter and multiple output channels (that can be connected to actual pins). You can set the frequency using SetPeriod, but only for all the channels in this timer peripheral at once.
func (*TCC) Channel
func (tcc *TCC) Channel(pin Pin) (uint8, error)
Channel returns a PWM channel for the given pin. Note that one channel may be shared between multiple pins, and so will have the same duty cycle. If this is not desirable, look for a different TCC or consider using a different pin.
func (*TCC) Configure
func (tcc *TCC) Configure(config PWMConfig) error
Configure enables and configures this TCC.
func (*TCC) Counter
func (tcc *TCC) Counter() uint32
Counter returns the current counter value of the timer in this TCC peripheral. It may be useful for debugging.
func (*TCC) Set
func (tcc *TCC) Set(channel uint8, value uint32)
Set updates the channel value. This is used to control the channel duty cycle, in other words the fraction of time the channel output is high (or low when inverted). For example, to set it to a 25% duty cycle, use:
tcc.Set(channel, tcc.Top() / 4)
tcc.Set(channel, 0) will set the output to low and tcc.Set(channel, tcc.Top()) will set the output to high, assuming the output isn’t inverted.
func (*TCC) SetInverting
func (tcc *TCC) SetInverting(channel uint8, inverting bool)
SetInverting sets whether to invert the output of this channel. Without inverting, a 25% duty cycle would mean the output is high for 25% of the time and low for the rest. Inverting flips the output as if a NOT gate was placed at the output, meaning that the output would be 25% low and 75% high with a duty cycle of 25%.
func (*TCC) SetPeriod
func (tcc *TCC) SetPeriod(period uint64) error
SetPeriod updates the period of this TCC peripheral. To set a particular frequency, use the following formula:
period = 1e9 / frequency
If you use a period of 0, a period that works well for LEDs will be picked.
SetPeriod will not change the prescaler, but also won’t change the current value in any of the channels. This means that you may need to update the value for the particular channel.
Note that you cannot pick any arbitrary period after the TCC peripheral has been configured. If you want to switch between frequencies, pick the lowest frequency (longest period) once when calling Configure and adjust the frequency here as needed.
func (*TCC) Top
func (tcc *TCC) Top() uint32
Top returns the current counter top, for use in duty cycle calculation. It will only change with a call to Configure or SetPeriod, otherwise it is constant.
The value returned here is hardware dependent. In general, it’s best to treat it as an opaque value that can be divided by some number and passed to tcc.Set (see tcc.Set for more information).
type UART
type UART struct {
	Buffer		*RingBuffer
	Bus		*sam.SERCOM_USART_INT_Type
	SERCOM		uint8
	Interrupt	interrupt.Interrupt	// RXC interrupt
}
UART on the SAMD51.
func (*UART) Buffered
func (uart *UART) Buffered() int
Buffered returns the number of bytes currently stored in the RX buffer.
func (*UART) Configure
func (uart *UART) Configure(config UARTConfig) error
Configure the UART.
func (*UART) Read
func (uart *UART) Read(data []byte) (n int, err error)
Read from the RX buffer.
func (*UART) ReadByte
func (uart *UART) ReadByte() (byte, error)
ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.
func (*UART) Receive
func (uart *UART) Receive(data byte)
Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.
func (*UART) SetBaudRate
func (uart *UART) SetBaudRate(br uint32)
SetBaudRate sets the communication speed for the UART.
func (*UART) Write
func (uart *UART) Write(data []byte) (n int, err error)
Write data over the UART’s Tx. This function blocks until the data is finished being sent.
func (*UART) WriteByte
func (uart *UART) WriteByte(c byte) error
WriteByte writes a byte of data over the UART’s Tx. This function blocks until the data is finished being sent.
type UARTConfig
type UARTConfig struct {
	BaudRate	uint32
	TX		Pin
	RX		Pin
	RTS		Pin
	CTS		Pin
}
UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.
type UARTParity
type UARTParity uint8
UARTParity is the parity setting to be used for UART communication.
type USBDevice
type USBDevice struct {
	initcomplete		bool
	InitEndpointComplete	bool
}
func (*USBDevice) Configure
func (dev *USBDevice) Configure(config UARTConfig)
Configure the USB peripheral. The config is here for compatibility with the UART interface.
type WatchdogConfig
type WatchdogConfig struct {
	// The timeout (in milliseconds) before the watchdog fires.
	//
	// If the requested timeout exceeds `MaxTimeout` it will be rounded
	// down.
	TimeoutMillis uint32
}
WatchdogConfig holds configuration for the watchdog timer.