pyportal

Constants

const ( D0 = PB13 // NINA_RX D1 = PB12 // NINA_TX D2 = PB22 // built-in neopixel D3 = PA04 // PWM available D4 = PA05 // PWM available D5 = PB16 // NINA_ACK D6 = PB15 // NINA_GPIO0 D7 = PB17 // NINA_RESETN D8 = PB14 // NINA_CS D9 = PB04 // TFT_RD D10 = PB05 // TFT_DC D11 = PB06 // TFT_CS D12 = PB07 // TFT_TE D13 = PB23 // built-in LED D24 = PA00 // TFT_RESET D25 = PB31 // TFT_BACKLIGHT D26 = PB09 // TFT_WR D27 = PB02 // SDA D28 = PB03 // SCL D29 = PA12 // SDO D30 = PA13 // SCK D31 = PA14 // SDI D32 = PB30 // SD_CS D33 = PA01 // SD_CARD_DETECT D34 = PA16 // LCD_DATA0 D35 = PA17 // LCD_DATA1 D36 = PA18 // LCD_DATA2 D37 = PA19 // LCD_DATA3 D38 = PA20 // LCD_DATA4 D39 = PA21 // LCD_DATA5 D40 = PA22 // LCD_DATA6 D41 = PA23 // LCD_DATA7 D42 = PB10 // QSPI D43 = PB11 // QSPI D44 = PA08 // QSPI D45 = PA09 // QSPI D46 = PA10 // QSPI D47 = PA11 // QSPI D50 = PA02 // speaker amplifier shutdown D51 = PA15 // NINA_RTS NINA_CS = D8 NINA_ACK = D5 NINA_GPIO0 = D6 NINA_RESETN = D7 // pins used for the ESP32 connection do not allow hardware // flow control, which is required. have to emulate with software. NINA_TX = D1 NINA_RX = D0 NINA_CTS = NINA_ACK NINA_RTS = NINA_GPIO0 LCD_DATA0 = D34 TFT_RD = D9 TFT_DC = D10 TFT_CS = D11 TFT_TE = D12 TFT_RESET = D24 TFT_BACKLIGHT = D25 TFT_WR = D26 NEOPIXEL = D2 WS2812 = D2 SPK_SD = D50 )

GPIO Pins

const ( A0 = PA02 // ADC0/AIN[0] A1 = D3 // ADC0/AIN[4] A2 = PA07 // ADC0/AIN[7] A3 = D4 // ADC0/AIN[5] A4 = PB00 // ADC0/AIN[12] A5 = PB01 // ADC0/AIN[13] A6 = PA06 // ADC0/AIN[6] A7 = PB08 // ADC1/AIN[0] AUDIO_OUT = A0 LIGHT = A2 TOUCH_YD = A4 TOUCH_XL = A5 TOUCH_YU = A6 TOUCH_XR = A7 )

Analog pins

const ( LED = D13 )
const ( USBCDC_DM_PIN = PA24 USBCDC_DP_PIN = PA25 )

USBCDC pins

const ( UART_TX_PIN = D1 UART_RX_PIN = D0 )

UART1 aka NINA_TX/NINA_RX

const ( NINA_BAUDRATE = 115200 NINA_RESET_INVERTED = true NINA_SOFT_FLOWCONTROL = true )

NINA-W102 settings

const ( SDA_PIN = PB02 // SDA: SERCOM2/PAD[0] SCL_PIN = PB03 // SCL: SERCOM2/PAD[1] )

I2C pins

const ( SPI0_SCK_PIN = PA13 // SCK: SERCOM1/PAD[1] SPI0_SDO_PIN = PA12 // SDO: SERCOM1/PAD[3] SPI0_SDI_PIN = PA14 // SDI: SERCOM1/PAD[2] NINA_SDO = SPI0_SDO_PIN NINA_SDI = SPI0_SDI_PIN NINA_SCK = SPI0_SCK_PIN )

SPI pins

const ( TWI_FREQ_100KHZ = 100000 TWI_FREQ_400KHZ = 400000 )

TWI_FREQ is the I2C bus speed. Normally either 100 kHz, or 400 kHz for high-speed bus.

Deprecated: use 100 * machine.KHz or 400 * machine.KHz instead.

const ( // I2CReceive indicates target has received a message from the controller. I2CReceive I2CTargetEvent = iota // I2CRequest indicates the controller is expecting a message from the target. I2CRequest // I2CFinish indicates the controller has ended the transaction. // // I2C controllers can chain multiple receive/request messages without // relinquishing the bus by doing 'restarts'. I2CFinish indicates the // bus has been relinquished by an I2C 'stop'. I2CFinish )
const ( // I2CModeController represents an I2C peripheral in controller mode. I2CModeController I2CMode = iota // I2CModeTarget represents an I2C peripheral in target mode. I2CModeTarget )
const Device = deviceName

Device is the running program’s chip name, such as “ATSAMD51J19A” or “nrf52840”. It is not the same as the CPU name.

The constant is some hardcoded default value if the program does not target a particular chip but instead runs in WebAssembly for example.

const ( KHz = 1000 MHz = 1000_000 GHz = 1000_000_000 )

Generic constants.

const NoPin = Pin(0xff)

NoPin explicitly indicates “not a pin”. Use this pin if you want to leave one of the pins in a peripheral unconfigured (if supported by the hardware).

const ( PinAnalog PinMode = 1 PinSERCOM PinMode = 2 PinSERCOMAlt PinMode = 3 PinTimer PinMode = 4 PinTimerAlt PinMode = 5 PinTCCPDEC PinMode = 6 PinCom PinMode = 7 PinSDHC PinMode = 8 PinI2S PinMode = 9 PinPCC PinMode = 10 PinGMAC PinMode = 11 PinACCLK PinMode = 12 PinCCL PinMode = 13 PinDigital PinMode = 14 PinInput PinMode = 15 PinInputPullup PinMode = 16 PinOutput PinMode = 17 PinTCCE PinMode = PinTimer PinTCCF PinMode = PinTimerAlt PinTCCG PinMode = PinTCCPDEC PinInputPulldown PinMode = 18 PinCAN PinMode = 19 PinCAN0 PinMode = PinSDHC PinCAN1 PinMode = PinCom )
const ( PinRising PinChange = sam.EIC_CONFIG_SENSE0_RISE PinFalling PinChange = sam.EIC_CONFIG_SENSE0_FALL PinToggle PinChange = sam.EIC_CONFIG_SENSE0_BOTH )

Pin change interrupt constants for SetInterrupt.

const ( PA00 Pin = 0 PA01 Pin = 1 PA02 Pin = 2 PA03 Pin = 3 PA04 Pin = 4 PA05 Pin = 5 PA06 Pin = 6 PA07 Pin = 7 PA08 Pin = 8 // peripherals: TCC0 channel 0, TCC1 channel 4 PA09 Pin = 9 // peripherals: TCC0 channel 1, TCC1 channel 5 PA10 Pin = 10 // peripherals: TCC0 channel 2, TCC1 channel 6 PA11 Pin = 11 // peripherals: TCC0 channel 3, TCC1 channel 7 PA12 Pin = 12 // peripherals: TCC0 channel 6, TCC1 channel 2 PA13 Pin = 13 // peripherals: TCC0 channel 7, TCC1 channel 3 PA14 Pin = 14 // peripherals: TCC2 channel 0, TCC1 channel 2 PA15 Pin = 15 // peripherals: TCC2 channel 1, TCC1 channel 3 PA16 Pin = 16 // peripherals: TCC1 channel 0, TCC0 channel 4 PA17 Pin = 17 // peripherals: TCC1 channel 1, TCC0 channel 5 PA18 Pin = 18 // peripherals: TCC1 channel 2, TCC0 channel 6 PA19 Pin = 19 // peripherals: TCC1 channel 3, TCC0 channel 7 PA20 Pin = 20 // peripherals: TCC1 channel 4, TCC0 channel 0 PA21 Pin = 21 // peripherals: TCC1 channel 5, TCC0 channel 1 PA22 Pin = 22 // peripherals: TCC1 channel 6, TCC0 channel 2 PA23 Pin = 23 // peripherals: TCC1 channel 7, TCC0 channel 3 PA24 Pin = 24 // peripherals: TCC2 channel 2 PA25 Pin = 25 // peripherals: TCC2 channel 3 PA26 Pin = 26 PA27 Pin = 27 PA28 Pin = 28 PA29 Pin = 29 PA30 Pin = 30 // peripherals: TCC2 channel 0 PA31 Pin = 31 // peripherals: TCC2 channel 1 PB00 Pin = 32 PB01 Pin = 33 PB02 Pin = 34 // peripherals: TCC2 channel 2 PB03 Pin = 35 // peripherals: TCC2 channel 3 PB04 Pin = 36 PB05 Pin = 37 PB06 Pin = 38 PB07 Pin = 39 PB08 Pin = 40 PB09 Pin = 41 PB10 Pin = 42 // peripherals: TCC0 channel 4, TCC1 channel 0 PB11 Pin = 43 // peripherals: TCC0 channel 5, TCC1 channel 1 PB12 Pin = 44 // peripherals: TCC3 channel 0, TCC0 channel 0 PB13 Pin = 45 // peripherals: TCC3 channel 1, TCC0 channel 1 PB14 Pin = 46 // peripherals: TCC4 channel 0, TCC0 channel 2 PB15 Pin = 47 // peripherals: TCC4 channel 1, TCC0 channel 3 PB16 Pin = 48 // peripherals: TCC3 channel 0, TCC0 channel 4 PB17 Pin = 49 // peripherals: TCC3 channel 1, TCC0 channel 5 PB18 Pin = 50 // peripherals: TCC1 channel 0 PB19 Pin = 51 // peripherals: TCC1 channel 1 PB20 Pin = 52 // peripherals: TCC1 channel 2 PB21 Pin = 53 // peripherals: TCC1 channel 3 PB22 Pin = 54 PB23 Pin = 55 PB24 Pin = 56 PB25 Pin = 57 PB26 Pin = 58 // peripherals: TCC1 channel 2 PB27 Pin = 59 // peripherals: TCC1 channel 3 PB28 Pin = 60 // peripherals: TCC1 channel 4 PB29 Pin = 61 // peripherals: TCC1 channel 5 PB30 Pin = 62 // peripherals: TCC4 channel 0, TCC0 channel 6 PB31 Pin = 63 // peripherals: TCC4 channel 1, TCC0 channel 7 PC00 Pin = 64 PC01 Pin = 65 PC02 Pin = 66 PC03 Pin = 67 PC04 Pin = 68 // peripherals: TCC0 channel 0 PC05 Pin = 69 // peripherals: TCC0 channel 1 PC06 Pin = 70 PC07 Pin = 71 PC08 Pin = 72 PC09 Pin = 73 PC10 Pin = 74 // peripherals: TCC0 channel 0, TCC1 channel 4 PC11 Pin = 75 // peripherals: TCC0 channel 1, TCC1 channel 5 PC12 Pin = 76 // peripherals: TCC0 channel 2, TCC1 channel 6 PC13 Pin = 77 // peripherals: TCC0 channel 3, TCC1 channel 7 PC14 Pin = 78 // peripherals: TCC0 channel 4, TCC1 channel 0 PC15 Pin = 79 // peripherals: TCC0 channel 5, TCC1 channel 1 PC16 Pin = 80 // peripherals: TCC0 channel 0 PC17 Pin = 81 // peripherals: TCC0 channel 1 PC18 Pin = 82 // peripherals: TCC0 channel 2 PC19 Pin = 83 // peripherals: TCC0 channel 3 PC20 Pin = 84 // peripherals: TCC0 channel 4 PC21 Pin = 85 // peripherals: TCC0 channel 5 PC22 Pin = 86 // peripherals: TCC0 channel 6 PC23 Pin = 87 // peripherals: TCC0 channel 7 PC24 Pin = 88 PC25 Pin = 89 PC26 Pin = 90 PC27 Pin = 91 PC28 Pin = 92 PC29 Pin = 93 PC30 Pin = 94 PC31 Pin = 95 PD00 Pin = 96 PD01 Pin = 97 PD02 Pin = 98 PD03 Pin = 99 PD04 Pin = 100 PD05 Pin = 101 PD06 Pin = 102 PD07 Pin = 103 PD08 Pin = 104 // peripherals: TCC0 channel 1 PD09 Pin = 105 // peripherals: TCC0 channel 2 PD10 Pin = 106 // peripherals: TCC0 channel 3 PD11 Pin = 107 // peripherals: TCC0 channel 4 PD12 Pin = 108 // peripherals: TCC0 channel 5 PD13 Pin = 109 // peripherals: TCC0 channel 6 PD14 Pin = 110 PD15 Pin = 111 PD16 Pin = 112 PD17 Pin = 113 PD18 Pin = 114 PD19 Pin = 115 PD20 Pin = 116 // peripherals: TCC1 channel 0 PD21 Pin = 117 // peripherals: TCC1 channel 1 PD22 Pin = 118 PD23 Pin = 119 PD24 Pin = 120 PD25 Pin = 121 PD26 Pin = 122 PD27 Pin = 123 PD28 Pin = 124 PD29 Pin = 125 PD30 Pin = 126 PD31 Pin = 127 )

Hardware pins

const ( // SERCOM_FREQ_REF is always reference frequency on SAMD51 regardless of CPU speed. SERCOM_FREQ_REF = 48000000 SERCOM_FREQ_REF_GCLK0 = 120000000 // Default rise time in nanoseconds, based on 4.7K ohm pull up resistors riseTimeNanoseconds = 125 // wire bus states wireUnknownState = 0 wireIdleState = 1 wireOwnerState = 2 wireBusyState = 3 // wire commands wireCmdNoAction = 0 wireCmdRepeatStart = 1 wireCmdRead = 2 wireCmdStop = 3 )
const ( QSPI_SCK = PB10 QSPI_CS = PB11 QSPI_DATA0 = PA08 QSPI_DATA1 = PA09 QSPI_DATA2 = PA10 QSPI_DATA3 = PA11 )

The QSPI peripheral on ATSAMD51 is only available on the following pins

const ( // WatchdogMaxTimeout in milliseconds (16s) WatchdogMaxTimeout = (16384 * 1000) / 1024 // CYC16384/1024kHz )
const HSRAM_SIZE = 0x00040000
const ( Mode0 = 0 Mode1 = 1 Mode2 = 2 Mode3 = 3 )

SPI phase and polarity configs CPOL and CPHA

const ( // ParityNone means to not use any parity checking. This is // the most common setting. ParityNone UARTParity = iota // ParityEven means to expect that the total number of 1 bits sent // should be an even number. ParityEven // ParityOdd means to expect that the total number of 1 bits sent // should be an odd number. ParityOdd )

Variables

var ( UART1 = &sercomUSART4 DefaultUART = UART1 UART_NINA = UART1 )
var ( I2C0 = sercomI2CM5 )

I2C on the PyPortal.

var ( SPI0 = sercomSPIM2 NINA_SPI = SPI0 )

SPI on the PyPortal.

var ( ErrTimeoutRNG = errors.New("machine: RNG Timeout") ErrClockRNG = errors.New("machine: RNG Clock Error") ErrSeedRNG = errors.New("machine: RNG Seed Error") ErrInvalidInputPin = errors.New("machine: invalid input pin") ErrInvalidOutputPin = errors.New("machine: invalid output pin") ErrInvalidClockPin = errors.New("machine: invalid clock pin") ErrInvalidDataPin = errors.New("machine: invalid data pin") ErrNoPinChangeChannel = errors.New("machine: no channel available for pin interrupt") )
var ( DAC0 = DAC{Channel: 0} DAC1 = DAC{Channel: 1} )
var Flash flashBlockDevice
var Watchdog = &watchdogImpl{}

Watchdog provides access to the hardware watchdog available in the SAMD51.

var ( TCC0 = (*TCC)(sam.TCC0) TCC1 = (*TCC)(sam.TCC1) TCC2 = (*TCC)(sam.TCC2) TCC3 = (*TCC)(sam.TCC3) TCC4 = (*TCC)(sam.TCC4) )

This chip has five TCC peripherals, which have PWM as one feature.

var ( ErrPWMPeriodTooLong = errors.New("pwm: period too long") )
var Serial Serialer

Serial is implemented via USB (USB-CDC).

var ( ErrTxInvalidSliceSize = errors.New("SPI write and read slices must be same size") errSPIInvalidMachineConfig = errors.New("SPI port was not configured properly by the machine") )
var ( USBDev = &USBDevice{} USBCDC Serialer )
var ( ErrUSBReadTimeout = errors.New("USB read timeout") ErrUSBBytesRead = errors.New("USB invalid number of bytes read") ErrUSBBytesWritten = errors.New("USB invalid number of bytes written") )

func CPUFrequency

func CPUFrequency() uint32

func CPUReset

func CPUReset()

CPUReset performs a hard system reset.

func ConfigureUSBEndpoint

func ConfigureUSBEndpoint(desc descriptor.Descriptor, epSettings []usb.EndpointConfig, setup []usb.SetupConfig)

func DeviceID

func DeviceID() []byte

DeviceID returns an identifier that is unique within a particular chipset.

The identity is one burnt into the MCU itself, or the flash chip at time of manufacture.

It’s possible that two different vendors may allocate the same DeviceID, so callers should take this into account if needing to generate a globally unique id.

The length of the hardware ID is vendor-specific, but 8 bytes (64 bits) and 16 bytes (128 bits) are common.

func EnableCDC

func EnableCDC(txHandler func(), rxHandler func([]byte), setupHandler func(usb.Setup) bool)

func EnterBootloader

func EnterBootloader()

EnterBootloader should perform a system reset in preparation to switch to the bootloader to flash new firmware.

func FlashDataEnd

func FlashDataEnd() uintptr

Return the end of the writable flash area. Usually this is the address one past the end of the on-chip flash.

func FlashDataStart

func FlashDataStart() uintptr

Return the start of the writable flash area, aligned on a page boundary. This is usually just after the program and static data.

func GetRNG

func GetRNG() (uint32, error)

GetRNG returns 32 bits of cryptographically secure random data

func InitADC

func InitADC()

InitADC initializes the ADC.

func InitSerial

func InitSerial()

func NewRingBuffer

func NewRingBuffer() *RingBuffer

NewRingBuffer returns a new ring buffer.

func ReceiveUSBControlPacket

func ReceiveUSBControlPacket() ([cdcLineInfoSize]byte, error)

func SendUSBInPacket

func SendUSBInPacket(ep uint32, data []byte) bool

SendUSBInPacket sends a packet for USB (interrupt in / bulk in).

func SendZlp

func SendZlp()

type ADC

type ADC struct { Pin Pin }

func (ADC) Configure

func (a ADC) Configure(config ADCConfig)

Configure configures a ADCPin to be able to be used to read data.

func (ADC) Get

func (a ADC) Get() uint16

Get returns the current value of a ADC pin, in the range 0..0xffff.

type ADCConfig

type ADCConfig struct { Reference uint32 // analog reference voltage (AREF) in millivolts Resolution uint32 // number of bits for a single conversion (e.g., 8, 10, 12) Samples uint32 // number of samples for a single conversion (e.g., 4, 8, 16, 32) SampleTime uint32 // sample time, in microseconds (µs) }

ADCConfig holds ADC configuration parameters. If left unspecified, the zero value of each parameter will use the peripheral’s default settings.

type BlockDevice

type BlockDevice interface { // ReadAt reads the given number of bytes from the block device. io.ReaderAt // WriteAt writes the given number of bytes to the block device. io.WriterAt // Size returns the number of bytes in this block device. Size() int64 // WriteBlockSize returns the block size in which data can be written to // memory. It can be used by a client to optimize writes, non-aligned writes // should always work correctly. WriteBlockSize() int64 // EraseBlockSize returns the smallest erasable area on this particular chip // in bytes. This is used for the block size in EraseBlocks. // It must be a power of two, and may be as small as 1. A typical size is 4096. EraseBlockSize() int64 // EraseBlocks erases the given number of blocks. An implementation may // transparently coalesce ranges of blocks into larger bundles if the chip // supports this. The start and len parameters are in block numbers, use // EraseBlockSize to map addresses to blocks. EraseBlocks(start, len int64) error }

BlockDevice is the raw device that is meant to store flash data.

type DAC

type DAC struct { Channel uint8 }

DAC on the SAMD51.

func (DAC) Configure

func (dac DAC) Configure(config DACConfig)

Configure the DAC. output pin must already be configured.

func (DAC) Set

func (dac DAC) Set(value uint16) error

Set writes a single 16-bit value to the DAC. Since the ATSAMD51 only has a 12-bit DAC, the passed-in value will be scaled down.

type DACConfig

type DACConfig struct { }

DACConfig placeholder for future expansion.

type I2C

type I2C struct { Bus *sam.SERCOM_I2CM_Type SERCOM uint8 }

I2C on the SAMD51.

func (*I2C) Configure

func (i2c *I2C) Configure(config I2CConfig) error

Configure is intended to setup the I2C interface.

func (*I2C) ReadRegister

func (i2c *I2C) ReadRegister(address uint8, register uint8, data []byte) error

ReadRegister transmits the register, restarts the connection as a read operation, and reads the response.

Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily read such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.

func (*I2C) SetBaudRate

func (i2c *I2C) SetBaudRate(br uint32) error

SetBaudRate sets the communication speed for I2C.

func (*I2C) Tx

func (i2c *I2C) Tx(addr uint16, w, r []byte) error

Tx does a single I2C transaction at the specified address. It clocks out the given address, writes the bytes in w, reads back len(r) bytes and stores them in r, and generates a stop condition on the bus.

func (*I2C) WriteByte

func (i2c *I2C) WriteByte(data byte) error

WriteByte writes a single byte to the I2C bus.

func (*I2C) WriteRegister

func (i2c *I2C) WriteRegister(address uint8, register uint8, data []byte) error

WriteRegister transmits first the register and then the data to the peripheral device.

Many I2C-compatible devices are organized in terms of registers. This method is a shortcut to easily write to such registers. Also, it only works for devices with 7-bit addresses, which is the vast majority.

type I2CConfig

type I2CConfig struct { Frequency uint32 SCL Pin SDA Pin }

I2CConfig is used to store config info for I2C.

type I2CMode

type I2CMode int

I2CMode determines if an I2C peripheral is in Controller or Target mode.

type I2CTargetEvent

type I2CTargetEvent uint8

I2CTargetEvent reflects events on the I2C bus

type NullSerial

type NullSerial struct { }

NullSerial is a serial version of /dev/null (or null router): it drops everything that is written to it.

func (NullSerial) Buffered

func (ns NullSerial) Buffered() int

Buffered returns how many bytes are buffered in the UART. It always returns 0 as there are no bytes to read.

func (NullSerial) Configure

func (ns NullSerial) Configure(config UARTConfig) error

Configure does nothing: the null serial has no configuration.

func (NullSerial) ReadByte

func (ns NullSerial) ReadByte() (byte, error)

ReadByte always returns an error because there aren’t any bytes to read.

func (NullSerial) Write

func (ns NullSerial) Write(p []byte) (n int, err error)

Write is a no-op: none of the data is being written and it will not return an error.

func (NullSerial) WriteByte

func (ns NullSerial) WriteByte(b byte) error

WriteByte is a no-op: the null serial doesn’t write bytes.

type PDMConfig

type PDMConfig struct { Stereo bool DIN Pin CLK Pin }

type PWMConfig

type PWMConfig struct { // PWM period in nanosecond. Leaving this zero will pick a reasonable period // value for use with LEDs. // If you want to configure a frequency instead of a period, you can use the // following formula to calculate a period from a frequency: // // period = 1e9 / frequency // Period uint64 }

PWMConfig allows setting some configuration while configuring a PWM peripheral. A zero PWMConfig is ready to use for simple applications such as dimming LEDs.

type Pin

type Pin uint8

Pin is a single pin on a chip, which may be connected to other hardware devices. It can either be used directly as GPIO pin or it can be used in other peripherals like ADC, I2C, etc.

func (Pin) Configure

func (p Pin) Configure(config PinConfig)

Configure this pin with the given configuration.

func (Pin) Get

func (p Pin) Get() bool

Get returns the current value of a GPIO pin when configured as an input or as an output.

func (Pin) High

func (p Pin) High()

High sets this GPIO pin to high, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to high that is not configured as an output pin.

func (Pin) Low

func (p Pin) Low()

Low sets this GPIO pin to low, assuming it has been configured as an output pin. It is hardware dependent (and often undefined) what happens if you set a pin to low that is not configured as an output pin.

func (Pin) PortMaskClear

func (p Pin) PortMaskClear() (*uint32, uint32)

Return the register and mask to disable a given port. This can be used to implement bit-banged drivers.

func (Pin) PortMaskSet

func (p Pin) PortMaskSet() (*uint32, uint32)

Return the register and mask to enable a given GPIO pin. This can be used to implement bit-banged drivers.

func (Pin) Set

func (p Pin) Set(high bool)

Set the pin to high or low. Warning: only use this on an output pin!

func (Pin) SetInterrupt

func (p Pin) SetInterrupt(change PinChange, callback func(Pin)) error

SetInterrupt sets an interrupt to be executed when a particular pin changes state. The pin should already be configured as an input, including a pull up or down if no external pull is provided.

This call will replace a previously set callback on this pin. You can pass a nil func to unset the pin change interrupt. If you do so, the change parameter is ignored and can be set to any value (such as 0).

func (Pin) Toggle

func (p Pin) Toggle()

Toggle switches an output pin from low to high or from high to low. Warning: only use this on an output pin!

type PinChange

type PinChange uint8

type PinConfig

type PinConfig struct { Mode PinMode }

type PinMode

type PinMode uint8

PinMode sets the direction and pull mode of the pin. For example, PinOutput sets the pin as an output and PinInputPullup sets the pin as an input with a pull-up.

type RingBuffer

type RingBuffer struct { rxbuffer [bufferSize]volatile.Register8 head volatile.Register8 tail volatile.Register8 }

RingBuffer is ring buffer implementation inspired by post at https://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php

func (*RingBuffer) Clear

func (rb *RingBuffer) Clear()

Clear resets the head and tail pointer to zero.

func (*RingBuffer) Get

func (rb *RingBuffer) Get() (byte, bool)

Get returns a byte from the buffer. If the buffer is empty, the method will return a false as the second value.

func (*RingBuffer) Put

func (rb *RingBuffer) Put(val byte) bool

Put stores a byte in the buffer. If the buffer is already full, the method will return false.

func (*RingBuffer) Used

func (rb *RingBuffer) Used() uint8

Used returns how many bytes in buffer have been used.

type SPI

type SPI struct { Bus *sam.SERCOM_SPIM_Type SERCOM uint8 }

SPI

func (*SPI) Configure

func (spi *SPI) Configure(config SPIConfig) error

Configure is intended to setup the SPI interface.

func (*SPI) Transfer

func (spi *SPI) Transfer(w byte) (byte, error)

Transfer writes/reads a single byte using the SPI interface.

func (*SPI) Tx

func (spi *SPI) Tx(w, r []byte) error

Tx handles read/write operation for SPI interface. Since SPI is a synchronous write/read interface, there must always be the same number of bytes written as bytes read. The Tx method knows about this, and offers a few different ways of calling it.

This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer. Note that the tx and rx buffers must be the same size:

spi.Tx(tx, rx)

This form sends the tx buffer, ignoring the result. Useful for sending “commands” that return zeros until all the bytes in the command packet have been received:

spi.Tx(tx, nil)

This form sends zeros, putting the result into the rx buffer. Good for reading a “result packet”:

spi.Tx(nil, rx)

type SPIConfig

type SPIConfig struct { Frequency uint32 SCK Pin SDO Pin SDI Pin LSBFirst bool Mode uint8 }

SPIConfig is used to store config info for SPI.

type Serialer

type Serialer interface { WriteByte(c byte) error Write(data []byte) (n int, err error) Configure(config UARTConfig) error Buffered() int ReadByte() (byte, error) DTR() bool RTS() bool }

type TCC

type TCC sam.TCC_Type

TCC is one timer peripheral, which consists of a counter and multiple output channels (that can be connected to actual pins). You can set the frequency using SetPeriod, but only for all the channels in this timer peripheral at once.

func (*TCC) Channel

func (tcc *TCC) Channel(pin Pin) (uint8, error)

Channel returns a PWM channel for the given pin. Note that one channel may be shared between multiple pins, and so will have the same duty cycle. If this is not desirable, look for a different TCC or consider using a different pin.

func (*TCC) Configure

func (tcc *TCC) Configure(config PWMConfig) error

Configure enables and configures this TCC.

func (*TCC) Counter

func (tcc *TCC) Counter() uint32

Counter returns the current counter value of the timer in this TCC peripheral. It may be useful for debugging.

func (*TCC) Set

func (tcc *TCC) Set(channel uint8, value uint32)

Set updates the channel value. This is used to control the channel duty cycle, in other words the fraction of time the channel output is high (or low when inverted). For example, to set it to a 25% duty cycle, use:

tcc.Set(channel, tcc.Top() / 4)

tcc.Set(channel, 0) will set the output to low and tcc.Set(channel, tcc.Top()) will set the output to high, assuming the output isn’t inverted.

func (*TCC) SetInverting

func (tcc *TCC) SetInverting(channel uint8, inverting bool)

SetInverting sets whether to invert the output of this channel. Without inverting, a 25% duty cycle would mean the output is high for 25% of the time and low for the rest. Inverting flips the output as if a NOT gate was placed at the output, meaning that the output would be 25% low and 75% high with a duty cycle of 25%.

func (*TCC) SetPeriod

func (tcc *TCC) SetPeriod(period uint64) error

SetPeriod updates the period of this TCC peripheral. To set a particular frequency, use the following formula:

period = 1e9 / frequency

If you use a period of 0, a period that works well for LEDs will be picked.

SetPeriod will not change the prescaler, but also won’t change the current value in any of the channels. This means that you may need to update the value for the particular channel.

Note that you cannot pick any arbitrary period after the TCC peripheral has been configured. If you want to switch between frequencies, pick the lowest frequency (longest period) once when calling Configure and adjust the frequency here as needed.

func (*TCC) Top

func (tcc *TCC) Top() uint32

Top returns the current counter top, for use in duty cycle calculation. It will only change with a call to Configure or SetPeriod, otherwise it is constant.

The value returned here is hardware dependent. In general, it’s best to treat it as an opaque value that can be divided by some number and passed to tcc.Set (see tcc.Set for more information).

type UART

type UART struct { Buffer *RingBuffer Bus *sam.SERCOM_USART_INT_Type SERCOM uint8 Interrupt interrupt.Interrupt // RXC interrupt }

UART on the SAMD51.

func (*UART) Buffered

func (uart *UART) Buffered() int

Buffered returns the number of bytes currently stored in the RX buffer.

func (*UART) Configure

func (uart *UART) Configure(config UARTConfig) error

Configure the UART.

func (*UART) Read

func (uart *UART) Read(data []byte) (n int, err error)

Read from the RX buffer.

func (*UART) ReadByte

func (uart *UART) ReadByte() (byte, error)

ReadByte reads a single byte from the RX buffer. If there is no data in the buffer, returns an error.

func (*UART) Receive

func (uart *UART) Receive(data byte)

Receive handles adding data to the UART’s data buffer. Usually called by the IRQ handler for a machine.

func (*UART) SetBaudRate

func (uart *UART) SetBaudRate(br uint32)

SetBaudRate sets the communication speed for the UART.

func (*UART) Write

func (uart *UART) Write(data []byte) (n int, err error)

Write data over the UART’s Tx. This function blocks until the data is finished being sent.

func (*UART) WriteByte

func (uart *UART) WriteByte(c byte) error

WriteByte writes a byte of data over the UART’s Tx. This function blocks until the data is finished being sent.

type UARTConfig

type UARTConfig struct { BaudRate uint32 TX Pin RX Pin RTS Pin CTS Pin }

UARTConfig is a struct with which a UART (or similar object) can be configured. The baud rate is usually respected, but TX and RX may be ignored depending on the chip and the type of object.

type UARTParity

type UARTParity uint8

UARTParity is the parity setting to be used for UART communication.

type USBDevice

type USBDevice struct { initcomplete bool InitEndpointComplete bool }

func (*USBDevice) Configure

func (dev *USBDevice) Configure(config UARTConfig)

Configure the USB peripheral. The config is here for compatibility with the UART interface.

type WatchdogConfig

type WatchdogConfig struct { // The timeout (in milliseconds) before the watchdog fires. // // If the requested timeout exceeds `MaxTimeout` it will be rounded // down. TimeoutMillis uint32 }

WatchdogConfig holds configuration for the watchdog timer.